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Abstract
I compile a unique dataset on plug-in electric vehicle charging at 13 HEIs in New York and
Massachusetts. Using a staggered differences-in-differences design, I estimate the impact of
adding charging stations on PEV adoption and station utilization. I find that adding the first
station attracts 1-2 unique users each week, who together drain 24.2 kWh from stations each day.
Each subsequent charging station increases PEV adoption by less than one unique user each
week, and meaningfully increases station utilization about five kWh daily. These results indicate
that drivers are likely supplementing charging at home with charging on-campus, rather than
relying on charging on-campus as their main source of re-fueling. I also find diminishing
marginal returns to both PEV adoption and station utilization, which suggests there is a limit to
the extent to which HEIs can encourage charging on-campus.
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I. Introduction

Most automobiles on the road are powered by either gas or diesel (these are known as

conventional vehicles, or CVs); however, sales of plug-in electric vehicles (PEVs), which are a

subset of electric vehicles that run by drawing electricity from an
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what extent can charging station infrastructure influence drivers’ decisions to adopt and use a

PEV?

In order to understand why charging infrastructure matters for PEV adoption, we must

consider the symbolic value of charging stations. Ease of accessibility to charging stations

reduces the chances that the driver will fail to reach their destination because the vehicle ran out

of charge, therefore they seem to represent safety and convenience on the road. Although most

charging happens at home, owners of current electric vehicles cited shorter driving range and

concerns about charging away from home as some of their greatest concerns prior to making

their purchases. These concerns that the vehicle will run out of charge before reaching its

destination (because the vehicle�





on-campus. The treatment is therefore the addition of a charging station to campus. This design

allows me to exploit the variation in the timing of station installations across campuses to

estimate the effects of each additional station to a campus, holding all other factors (such as

seasonal and across-campus differences in charging patterns) equal. I control for the historical

price of electricity at home, which is where most charging happens, and changes in the pricing

scheme used by the HEI.

Using a staggered differences-in-differences
at



factors affecting demand for charging on-campus (e.g. congestion at charging stations and

general parking) or consumer preferences for PEVs in the HEI community. Regardless, my

findings suggest that there is growing demand for charging on-campus likely as a supplement for

charging at home.

II. Literature Review

Partly due to slow adoption, there is little publicly available data on PEVs and charging

station utilization, particularly in the U.S.. In the past few years, however, researchers seem to be

paying more attention to electric vehicles, contributing to a growing body of literature on PEVs.

I investigate relevant papers on the economics of PEVs and PEV charging, including papers that

identify factors affecting PEV adoption and usage, papers identifying the key factors affecting

charging station utilization, and papers making recommendations for electric vehicle policy. The

final category seems the most developed, which makes sense given that many policymakers are

passionate about facilitating the transition away from CVs, yet have been so far unsuccessful in

considerably boosting PEV adoption.

In general, a consumer’s choice to purchase a PEV depends on the net cost of a PEV,

which carries a higher up-front cost (likely of a brand-new PEV as the used-PEV market is still

immature) plus the cost of at-home charging and maintenance costs (which are low relative to

CVs) minus federal and state rebates (Rapson & Muehlegger 2023). Electric vehicle buyers can

receive up to $2,000 in New York or $6,000 in Massachusetts in rebates depending on the

vehicle’s range, along with up to $7,500 in rebates from the federal government legislated by the

Inflation Reduction Act (U.S. News & World Report 2023). Rapson & Muehlegger (2023) affirm

the importance of fuel cost savings in boosting electric vehicle adoption, and find that in New



York state, driving an electric vehicle could potentially save drivers between $202 and $258 per

year, whereas annual savings range from $70 to $202 dollars in Massachusetts. An exhaustive

literature review conducted by Pamidimukkala et al (2024) finds that the higher up-front cost,

insufficient charging infrastructure, and shorter driving range relative to conventional vehicles

are consumers’ greatest concerns about purchasing an electric vehicle. On the other hand, they

find that reducing air pollution and taking advantage of rebates are often cited as reasons for

purchasing an electric vehicle. He et al. (2022) confirm that in Hong Kong, accessibility to

charging and environmental concern meaningfully bolster consumer interest in purchasing a

PEV, while shorter driving ranges reduce interest. Lashari et al. (2021) also show perceived

environmental benefits and economic background to be the two strongest signifiers of electric

vehicle adoption in South Korea. Both He et al. (2022) and Lashari et al. (2021) use stated

preference survey data; however, Coffman et al. (2016) suggest that actual purchases of electric

vehicles are much lower than stated preferences.

Certain demographics are associated with greater electric vehicle adoption, which I

briefly discuss in order to appreciate the unequal distribution of the benefits of charging station

infrastructure. In Ireland, Mukherjee & Ryan (2019) show that being located in an urban area is

associated with greater early electric vehicle adoption, which is also higher among people with a

university degree and lower among younger people (ages 19 to 24) and those renting their living

space, which may indicate challenges to access to at-home charging infrastructure.

Unsurprisingly, the higher cost of EVs and information asymmetry (i.e. people with a university

degree are more likely to have encountered and researched an EV) creates barriers to adoption

which are reflected in the demographic characteristics of the electric vehicle-owning population.

Given that my primary dataset tracks the charging behavior of PEV owners on HEI campuses, it
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to happen during peak charging times (i.e. during the work week and during the day) on

campuses where there is a lot of demand for charging or bad charging practices. An example of

bad charging practices might be charge idling, which is when the vehicle is fully charged yet still

parked in the designated spot for charging. Other factors might contribute to congestion, such as

the unreliability of subsequent stations (e.g. they require maintenance more often, so it is less

likely that they will be able to deliver a charge when drivers need it). In theory, adding more

(reliable) charging stations should relieve congestion; however, adding more stations might also

create more demand for charging, which causes congestion. Thus, the impact of congestion on

adoption is ambiguous. While I have no direct measure of congestion, I attempt to quantify the

demand for charging on-campus by supplementing my results on the number of unique users

charging on-campus with an investigation of the effect of charging infrastructure on station

utilization.

IV. Data

My primary dataset is composed of per session charging data from each station on

thirteen HEI campuses, ranging from May 5, 2014 to January 31, 2024. I received information

on many different variables; however, the relevant ones for my analysis are the date and time of

each charging session at each charging station, the electricity consumption per charging station

(kWh) per session, and user week
user
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Panel A. and Panel B. provide summary statistics for the variables relevant to the

estimation of the weekly number of unique users on a campus and the estimation of the daily

amount of energy usage by a station, respectively. Panel A. indicates there are at most 173

stations across 13 campuses. I drop one station which was used very few times compared to the

other stations in my sample (<50 sessions recorded). For UMass Amherst, I grouped together the

Amherst and Hadley campuses since they are close to one another and considered the

Newton-campus separately since it is a several hour drive from the Amherst and Hadley

campuses. Starting with my treatment at the extensive margin, Table 1. indicates that the dataset

includes HEIs that were early adopters of charging infrastructure, like SUNY New Paltz, and

those that more recently adopted charging infrastructure, like Smith College. Table 1. also breaks

down the number
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after the second change in the pricing scheme, and so on. Five schools changed their pricing

scheme at some point, which are shown in Table 1.

Lastly, Table 1. indicates which schools reported user ID numbers. Nine HEIs reported

user ID numbers, for a total of 4,510 observations. According to Panel A. in Table 2., there is an

average of 1.47 unique users charging on-campus each week and a median of zero users. This

suggests that the distribution of unique users is skewed to the right, meaning that most weeks

there are few to none unique users and a few weeks for which there were many unique users.

After dropping users who only charged on-campus once, the mean falls to 0.84 unique users. I

hypothesize that dropping sessions that occurred during the COVID-19 lockdowns and dropping

sessions that occur during summer and winter breaks will result in a higher average and median

number of unique users. Panel A reveals that the average number of unique, repeat users

increases to 0.85 after dropping observations affected by COVID-19 travel disruptions and

increases further to 0.91 unique, repeat users after dropping observations that did not occur

during the academic year. The median is not affected, which suggests that there are still some

weeks in which many more users charge on-campus compared to others. I explore possible

explanations for this phenomenon in the Results.

Overall, there are 6,613 unique users reported by the end of January 2024. Out of these,

6,180 were reported in New York as only one HEI (Smith College) in Massachusetts reported

unique users. To help put this number into perspective, I also obtained state-level micro-data on

electric vehicle registrations in New York from 2017 to 2021. Registration data indicates that

there were 29,333 electric vehicles registered by the end of 2021. In the context of the

registration data, my data suggests that nearly a fifth of the PEVs registered in New York state

charged at an HEI charging station. While not a large share, this only considers the few HEIs in



my sample, therefore my count is likely an underestimate of the number of PEVs charging at

HEI campuses. This suggests that HEIs play a not insignificant role in encouraging PEV

adoption.

One case provides particularly strong evidence that HEIs are crucial players in PEV

adoption. SUNY Buffalo added three stations initially, then added fifteen stations within a few

months. Figure 1. provides strong suggestive evidence that charging infrastructure increases

PEV adoption: the number of monthly unique users increases from a handful when there were

three stations on-campus to more than 30 users after an additional fifteen stations are added.

Figure 1. also indicates that there are almost half as many unique users during the summer

months and winter break, which is consistent with my findings in Table 2.

According to Panel B. in Table 2, the mean daily energy usage for each station is 2.79

kWh, and the median is zero. This also suggests that distribution of energy usage is skewed to

the right, therefore there are many days where stations are not used and several days where

stations drained a lot of energy, up to 301 kWh. Figure 2. also provides evidence that stations

were utilized much more after the additional fifteen stations were added, as monthly total energy

usage jumps from less than 500 kWh daily to more than 8,000 kWh. Similar to Figure 1., station

utilization peaks during the academic year and is nearly half of those levels during breaks. As

expected, the mean is higher when dropping observations affected by COVID-19 travel

disruptions (2.89 kWh) and even higher when dropping sessions that did not occur in the

academic year. Overall, over 1.66 million kWh were drained from stations across all HEIs in my

sample. Finally, I point out that there are many more observations for the treatment variables

than for daily station energy usage because the treatment variables are calculated at the campus

level. I do this because I still know how many stations are on-campus using energy usage data







On the left side of the equation, I have two empirical specifications. First, I will estimate

the effect of the treatment variables– Any_station, Station_obs, and Station_obs_squared– on the

number of unique users at the campus level, which will be aggregated by week, as indicated by

equation (1). I will also estimate the treatment effect on the daily amount of energy usage at the

station level to capture station utilization, as indicated by equation (2). On the right side of the

equation, both empirical specifications share the same treatment variables. They also share the

same control variable, which is indicated by Xit. As mentioned in the Data section, I anticipate

that rises in the price of residential electricity, which proxies the cost of at-home charging, may

discourage drivers’ from adopting a PEV and encourage existing PEV owners to charge more

on-campus, therefore I control for monthly variation in residential electricity prices at the

state-level in my specification.

Both specifications also include week of sample and year fixed effects (δt ). Week of year

fixed effects should capture weekly trends in PEV adoption, such as seasonal trends in

car-buying and times when there are more visitors on-campus who might be charging on-campus

for the first time. I also included a year fixed effect to capture long-term trends in new users

charging on-campus. These trends include differences in
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Table 1. presents the results of my primary empirical specification, which estimates the

effect of having stations on-campus on the number of unique users in a week. Since the number

of unique users proxies PEV adoption and PEV adoption has been shown to be positively

associated with perceived charging station accessibility, I would expect small, positive

coefficients for “Any stations” and “Station observations”. I expect adding the first station to

have a small impact because users are likely existing PEV owners who substitute charging

at-home for charging on-campus. Similarly, I expect adding subsequent stations does not have a

large effect because automobiles are a big investment which usually only happens after their

current vehicle is due to be replaced. Additionally, those interested in purchasing a PEV might

perceive a significant amount of congestion with only a few charging stations on-campus and are

therefore waiting for additional stations to be added. As expected, the coefficients for both

treatment variables are small, positive, and statistically significant across nearly all estimations.

The coefficient for “Any stations” in my Main (1) and Clustering Standard Errors By

Campus (2) estimations suggests that having any charging infrastructure on-campus attracts

1.212 unique users each week and 1.033 repeat, unique users each week. Adding back

COVID-19 years (4) raises the estimate of unique users slightly, which indicates there might

have been a few users charging on-campus for the first time during COVID-19. Using calendar

time fixed effects instead of sample time fixed effects increases the precision of my estimates

and results in a slightly larger coefficient of 1.729 unique users each week which is statistically

significant at the 1% level.

I find that each additional station increases the number of unique users charging

on-campus each week by 0.526 (1), (2); however, this result loses significance after clustering

standard errors (2). On the other hand, each additional station increases the number of unique,



repeat users by 0.393, which is statistically significant at the 1% level even after clustering

standard errors (3). Running tobit on the full dataset reveals that each additional station increases

the number of unique users by 0.448. Since some schools added stations during COVID-19, it is

likely that these results overestimate the true number of unique users charging on-campus. I also





as the following: compared to having no stations, having one to three stations increases the

number of unique users by 20.578. Similarly, having four to 10 stations adds 21.791 unique users

compared to having no stations, having 11 to 19 stations adds 22.868 unique users compared to

having no stations, and having more than 20 stations adds 27.420 unique users compared to

having no stations. These results are statistically significant with a confidence level of 99%.

While the number of unique users added in each bin is about the same for the first three bins, the

last bin holds nearly five more unique users compared to the other bins. Since there does not

seem to be any clear correlation between the number of charging stations and the time since

hz
the





number of unique users. In comparison to the results for “Station subtractions” in the unique user

estimation, the result for energy usage is plausible: removing a station reduces congestion levels

over time by discouraging some people from purchasing a PEV (or encouraging them to

postpone the purchase) and discouraging existing PEV owners from charging on-campus. This

only makes sense if the station is no longer accessible or rendered inoperable, thus I assume this

is what happened since I was not informed that any stations had ever been taken offline when

collecting my data.

As with the coefficients on “Station observations squared” for the unique users

specification, the coefficients on “Station observations squared” are negative and statistically

significant at the 99% confidence level across all estimations of energy usage. Every additional

station increases energy usage by less than two-tenths of a kWh less than the previous station.

Thus, both the number of unique users on-campus and charging station utilization rise more

slowly as the number of charging stations on-campus rises.

The results of binning stations in the same way as for the unique users estimations (6)

indicates that compared to having no stations, having one to three stations increases energy usage

by 177.273 kWh. Similarly, having four to 10 stations drains about 188.392 kWh compared to

having no stations, having 11 to 19 stations drains about 193.796 kWh compared to having no

stations, and having more than 20 stations drains about 199.020 kWh compared to having no

stations. These results are statistically significant with a confidence level of 99%. Each bin of

stations drains more energy compared to the previous bin, but by a lesser amount compared to

the previous bin (e.g. bin 11 drains eight more kWh than bin 2, bin 4 drains five more kWh than

bin 3, and bin 5 drains five more kWh than bin 4). This suggests that campuses with more

stations are probably being utilized more than campuses with fewer stations because there is
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are able to charge their vehicle longer because there is not a lot of demand on-campus for

charging. As subsequent stations are added, more drivers are incentivized to adopt a PEV and

charge it on-campus which increases congestion. In reaction to greater demand for charging

on-campus, drivers charge less. Alternatively, the fuel economy of PEVs may simply have

improved since the first charging station was added on-campus. For several HEIs in my sample

(e.g. UMass Amherst), charging infrastructure has existed for more than 10 years. It is not

difficult to imagine that vehicles have simply become more efficient, which considerably reduces

the need for charging.

Finally, I consider the implications of my control variable, residential electricity prices. I

would expect that charging station utilization on-campus would increase as charging at home

becomes relatively more expensive (as long as charging on-campus does not depend on energy

prices). Electricity prices are statistically significant only for the Main (1) estimation; for all

subsequent estimations, a one dollar increase in the price of electricity has statistically zero

impact on charging station utilization. Unlike the results of estimation (6) in Table 1., binning

stations result in a positive electricity price coefficient, which is likely because owners are

substituting charging at-home for charging on-campus.

VI. Conclusion & Policy Implications

Over the past few months, I have compiled charging station data from HEIs throughout

New York and Massachusetts to understand their role as catalysts for developments in

sustainability. I ultimately received usable data from 13 HEIs to investigate the extent to which

these institutions can impact PEV adoption through charging infrastructure on-campus. I

supplement these findings with an investigation of the impact of charging infrastructure on



station energy usage, which captures differences between stations in utilization. I anticipate that

adding charging infrastructure will affect PEV adoption and station utilization at the extensive

margin, which is the impact of adding the first station, and at the intensive margin, which is the

impact of adding subsequent stations. Additionally, I consider the implications of congestion,

which I cannot directly measure, on PEV adoption and station utilization. Using a staggered

differences-in-differences design, I show that HEIs can meaningfully impact PEV adoption by

adding charging infrastructure. Specifically, I find that adding the first station meaningfully

increases station energy usage by about 24.2 kWh daily, whereas adding subsequent stations

meaningfully increases the number of unique users in a week by less than one and increases the

amount of energy used by each station by about five kWh each day. I also find there are

diminishing marginal returns to both PEV adoption and station utilization from adding stations

on-campus, which is likely achieved when campuses install sufficient charging infrastructure to

meet current demand for charging. Since the average battery capacity of a PEV is around 50

kWh, these results suggest that PEV users treat charging on-campus as a convenient

supplementary source of charging, rather than the main source of charging, which still likely

happens at home.

In general, my results suggest that HEIs can catalyze PEV adoption through charging

on-campus, although this effect shrinks as the number of charging stations exceeds current

demand. I believe that HEIs should consider the number of stations already on campus when

deciding whether or not to install additional charging stations. I also advise taking steps to gauge

how much interest the community has in adopting PEVs, such as a transportation survey.

My empirical methodology is limited in several ways by my data. Most obviously, I only

have 13 HEIs in my sample, and only nine reported user IDs that distinguish one user from



another. Additionally, I only received data from two schools in Massachusetts (which translates

to three campuses). This may limit the generalizability of my results outside of New York state,

in which most of the HEIs were located. Regardless, I believe that my results can generalize to

most areas in the Northeast, given that the campus settings in my sample range from rural to

urban (but exclude metropolitan) and that PEV adoption and charging infrastructure is largely

comparable. I was also limited by the data I could find on residential electricity prices, which

captured differences in the average price between states.

In the future, I would like to explore several related tracks. First, I considered controlling

for the price of gas in my estimations; however, there was little literature or surveys that

indicated PEV drivers were actively switching between different types of fuel and vehicles

depending on the cost of refueling @հҰҀрՠհð
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